Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhong-Cheng Min, ${ }^{\text {a }}$ Ming-Zhi Huang, ${ }^{\text {b }}$ * Wei-Min Chen, ${ }^{\text {a }}$ Quan Zhang ${ }^{\text {a }}$ and Guang-Fu Yang ${ }^{\text {a }}$

${ }^{\text {a Key }}$ Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079,
People's Republic of China, and ${ }^{\mathbf{b}}$ Hunan Research Institute of Chemical Industry, Changsha 410007, People's Republic of China

Correspondence e-mail: jacobmin@163.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.062$
$w R$ factor $=0.167$
Data-to-parameter ratio $=11.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

2-(1,3-Dioxo-4,5,6,7-tetrahydro-1H-isoindol-2-yl)- N -[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzoxazin-6-yl]acetamide monohydrate

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, the cyclohexene ring exhibits a distorted chair conformation. The crystal packing is stabilized by intra- and intermolecular hydrogen bonds.

Comment

Herbicides inhibiting protoporphyrinogen oxidase (protox) have been sold commercially for nearly 40 years (Dayan \& Duke, 1997). The title compound, (I), may belong to this family of protox-inhibiting herbicides and we present its crystal structure here.

(I)

The molecular stucture of (I) is shown in Fig. 1. The C10N 2 bond is shorter than the normal value of $\mathrm{C}-\mathrm{N}[1.47$ (2) \AA; Sasada, 1984]. The bond length of C2-C3 is slightly greater than the normal value of C-C [1.54 (3) \AA; Sasada, 1984]. The torsion angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ indicate a distorted chair conformation of the cyclohexene ring. The sum of the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7, \mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9$ angles is 359.9°, the sum of the $\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11, \mathrm{C} 10-\mathrm{N} 2-\mathrm{H} 2$ and $\mathrm{C} 11-\mathrm{N} 2-\mathrm{H} 2$ angles is 359.1° and the sum of the $\mathrm{C} 17-$ $\mathrm{N} 3-\mathrm{C} 15, \mathrm{C} 17-\mathrm{N} 3-\mathrm{C} 19$ and $\mathrm{C} 15-\mathrm{N} 3-\mathrm{C} 19$ angles is 360.0°.

Figure 1
The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level. All disorder components are shown.

Received 14 December 2005
Accepted 18 January 2006

Figure 2
The packing of (I), with hydrogen bonds shown as dashed lines. Only one component of each disordered group is shown.

Therefore, atoms N1, N2 and N3 are $s p^{2}$ hybridized. The molecules of (I) form two-dimensional layers through hydrogen bonds in the $a c$ plane (Table 2 and Fig. 2).

Experimental

2-[1,3-Dioxo-4,5,6,7-tetrahydro-1 H -isoindol-2-yl]acetyl choride $(1.2 \mathrm{mmol})$ in dry toluene $(10 \mathrm{ml})$ was added dropwise to a solution of 6-amino-7-fluoro-4-(prop-2-ynyl)-2 H -benzoxazin-3(4H)-one (1 mmol) and triethylamine (1.2 mmol) in dry toluene $(10 \mathrm{ml})$ under N_{2} at room temperature, and the resulting mixture was stirred for 2 h . After filtration, the solid was washed with water and recrystallized from petroleum ether and methanol ($4: 1 \mathrm{v} / \mathrm{v}$). Colorless plate-shaped crystals of (I) were obtained by evaporation of the solvent over a period of two weeks.

Crystal data

```
\(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}\)
\(M_{r}=429.40\)
Monoclinic, \(P 2_{1} / n\)
\(a=19.2192\) (19) £
\(b=4.7354\) (5) \(\AA\)
\(c=23.421\) (2) \(\AA\)
\(\beta=92.091\) (2) \({ }^{\circ}\)
\(V=2130.2(4) \AA^{3}\)
\(Z=4\)
```


Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2000 $)$
$\quad T_{\min }=0.959, T_{\max }=0.998$
14145 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.167$
$S=1.04$
3719 reflections
328 parameters
H atoms treated by a mixture of independent and constrained refinement

3719 independent reflections 2411 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-21 \rightarrow 22$
$k=-5 \rightarrow 5$
$l=-27 \rightarrow 27$
$D_{x}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2160 reflections
$\theta=2.7-21.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Plate, colorless
$0.40 \times 0.10 \times 0.02 \mathrm{~mm}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0734 P)^{2}\right.} \\
&+0.5971 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{C} 2-\mathrm{C} 3$	$1.560(7)$	$\mathrm{C} 10-\mathrm{N} 2$	$1.318(4)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7$			
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$109.7(2)$	$\mathrm{C} 17-\mathrm{N} 3-\mathrm{C} 15$	$120.9(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9$	$126.7(3)$	$\mathrm{C} 17-\mathrm{N} 3-\mathrm{C} 19$	$118.9(2)$
C10-N2-C11	$123.5(3)$	$\mathrm{C} 15-\mathrm{N} 3-\mathrm{C} 19$	$120.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$126.1(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 2^{\text {i }}$	0.93	2.33	3.244 (5)	168
C19-H19B \cdots O 4	0.97	2.30	2.735 (4)	106
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.44	3.354 (4)	170
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 3^{\text {iii }}$	0.97	2.48	3.189 (8)	130
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}_{4}^{\mathrm{iv}}$	0.97	2.54	3.454 (8)	157
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {iii }}$	0.851 (10)	2.04 (2)	2.847 (9)	158 (3)

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x, y-1, z$; (iv) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.

The amide and water H atoms were located in a difference map and were refined with the restraints $\mathrm{N}-\mathrm{H}=0.86$ (1) \AA and $\mathrm{O}-\mathrm{H}=$ $0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier) for H 1 and $1.5 U_{\text {eq }}($ carrier $)$ for water H atoms. Other H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and refined in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). Two of the C atoms in the cyclohexene ring were disordered over two positions, and the occupancy factors for disordered positions $\mathrm{C} 3 / \mathrm{C} 3^{\prime}$ and $\mathrm{C} 4 / \mathrm{C} 4^{\prime}$ were refined to 0.709 (12) and 0.291 (12). Atom O3/O3' was disordered over two positions, with occupancies of 0.77 (9) and 0.23 (9). Water atoms O6 and O^{\prime}, with partial occupancies of 0.50 [initially refined to 0.504 (1)], were assigned tentatively, based only on the crystallographic evidence; the water probably derives from the methanol solvent used for recrystallization.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 20372021) and Hunan Province Natural Science Foundation of China (No. 03 JJY3018).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART (Version 5.059), SAINT (Version 6.01) and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Dayan, F. E. \& Duke, S. O. (1997). Brighton Crop Prot. Conf. Weeds, 1, 83-92. Sasada, Y. (1984). Molecular and Crystal Structure in Chemistry Handbook, 3rd ed. The Chemical Society of Japan, Tokyo: Maruzen Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

